Tuning scaffold mechanics by laminating native extracellular matrix membranes and effects on early cellular remodeling.

نویسندگان

  • Salma Amensag
  • Peter S McFetridge
چکیده

At approximately 50 µm thin, the human amniotic membrane (hAM) has been shown to be a versatile biomaterial with applications ranging from ocular transplants to skin and nerve regeneration. These investigations describe laminating layers of the hAM into a multilayered, conformation creating a thicker, more robust biomaterial for applications requiring more supportive structures. Amniotic membranes were decellularized using 4 M NaCl and prepared as either flat single-layered sheets or rolled into concentric five-layered configurations. Constructs were seeded with human vascular smooth muscle cells and cultured over 40 days to quantify biological and mechanical changes that occurred during early remodeling events. By day 40 single-layered constructs displayed a decreasing trend in cellular densities and glycosaminoglycan (GAG) concentration, comparative to multilayered constructs with increasing cell densities (from 9.1 to 32 × 10(6) cells/g) and GAG concentrations (from 6.07 to 17.4 mg/g). Oxygen diffusion was calculated and found to be sufficient to maintain cell populations through the constructs full thickness. Although an overall decrease in the modulus of elasticity was noted, the modulus in the failure range of rolled constructs stabilized at values 25 times higher than single-layered constructs. Rolled constructs typically displayed an upregulation of contractile and matrix remodeling markers (α-actin, SM22 and type 1 collagen, MMP-2 respectively) indicating biological adaptation. Considerable design flexibility can be achieved by varying the number of scaffold layers, allowing the possibility of tuning the constructs physical dimensions, shape and tensile properties to suit specific targeted vascular locations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue Engineering in Dentistery

Introduction Perforation of maxillary sinus mucous membrane is of the most prevalent complication during open sinus lift surgery. Moreover, such complication can usually be managed by an absorbable membrane. As far as absorbable membranes are concerned, decellularized maxillary sinus mucous membranes, which is an extracellular matrix, can be used as a biologic scaffold and insulating membrane ...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

The Sheep’s Urinary Bladder Matrix as a Potent Biological Materials Resource -an Ultrastructural Study

  Background and Objectives: Biological scaffold resources composed of extracellular matrix (ECM) have been shown to make easy the practical remodeling of various tissues in both animal and human studies. The goal of current study was to make sheet form of ECM from sheep’s urinary bladder. Methods: ECM was extracted from Sheep’s urinary bladder according to standard method. Scanning electron ...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 102 5  شماره 

صفحات  -

تاریخ انتشار 2014